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A general methcd for Eolving supersonic potential flow problems for
stationary or rotating coordinate systems is presented. The principal
attributes of the methcd are: It can handle flows which cannot be
treated as two-dimensional, and a sound theoretical basis gives assur-
ance of its validity for a class of boundary-value problems. An appli-
cation to the design of a compressor rotor

I

INTRODUCTION

The fluid flow through a turbmachine
dimensional. This fact must be considered

is

is

made.

intrinsically three-
for a full understanding of

such flow, and in particular for adequate treatment of such probl&s as
off-design performance surging and secondsry flows due, for example, to
boundary layers. However, this three-dimensionality is not easily
accounted for theoretically, even in the idealized case of no viscosity
or heat transfer. In existing approaches, sme sort of two-dimensional
flow is first considered, such as flow through a cascade (Tyler, refer-
ence 1), axially symmetrical flow (Mmble, reference 2; Goldstein,
reference 3), flow in surfaces of revolution (WiJand Brown, refer-
ences 4 and 5), or flow over other special.surfaces (Stanitz, refer-
ence 6). In some cases, this flow serves as a first approximation and
is modified to give normal variations by Taylor series expansions
(Reissner,reference 7), by use of A@ceret’s two-tiensional vortex-and-
source methal (Meyer, reference 8) or by successive applications of two
or more different types of two-dimensional flow (W, reference 9).

The solution of the two-dimensionalproblems and the extensions to
three-dimensionalflow both generally involve one or more of the folJowing
numerical techniques: use of formal series; repeated substitution of
“apprmdmate solutions” into the clifferential equations; and replacement
of clifferential equations by clifference equations and subsequent appli-
cation of relaxation or matrix methods. There is no assurance that
numerical results obtained

1 original.. three-dimensional
by such means correspond to a solution of the
problm.

.
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The present treatment is a direct attack on the suyersonia three.
dimensional problem; it dispenses with special two-dimensional flows.
l&reover, the mathematical basis,of the present treatment due to
E. W. Titt (reference 10) contains a guarantee that the numerical pro-
cedure involved shall converge “locally” to the correct answer.

The fluid flow through a single component of a turbomachine is
treated herein - either a rotating or a stationary component. Moreover,
consideration is limited to regions in a cmponent in which the fluid
flow may be considered inviscid, isentropic, and irrotational. Such .
regions, however, are yermitted to be bounded by surfaceq on which these
assumptions sre not vslid - such as shock surfaces. b such a region,‘
the flow is described mathematically by

when the flow space is provided with cylindrical coordhates zjT,r

which rotate with the angubr velocity m of the wheel. Note that the
* a~ a~

sound speed a is a function of I, m, r, x~y~ ‘Z”*

solution of this equationl @ th~ of a f10’WProbl% is obtatied h
the region when suitable pwsical conditions sre given on the boundary
of the region. A description of a method of solving equation (1) with
suitable ~oundarv or ‘initialcondition will be
general.point of view. Then an
flow problan will be made. The
NACA Lewis hboratory.

application of
work described

presented first from a .
the method to a specific
herein was done at the
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For the present purposes, equation (1) is characterizedby the
statement that it is a single quasi-linesr partial clifferent*al equation

?
of the second order for a single function of three independent variables;
that is, it is an equation of the form

)
)

(2)

(~ synibol.sare defined in the appendix.) The methcd to be described
for solving equation (2) is a so-caXl.edcharacteristicmethod. The
central idea of such a method is to solve a differential equation by
replacing it by an equivalent system of clifferential equations, each
equation containing derivatives with respect to fewer independent
vsriables. This-is done by utilizing characteristicmanifolds. The
problem is thus reduced to solving the equivalent system called the
system of characteristic equations (Courant and Hilbert, reference D).
In reference 10, a system of characteristic equqtions for equation (2)
is obtained by means of characteristic surfaces, and a constructive
existence theorem for the characteristic equations is presented.

Characteristic Surfaces

On any surface

z = Z(s,w)

‘1
P,=l?xs,w)

~
o

r = r(s,w)

the following six second-ordei strip condition sre required:

(3)

(4)

..- . . ..-. . . .. . . .. .. .. .... ._______ _____________ _________ _______ -,_J_ _..F
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(5)

(6)

(7)

(8)

Since the determinantt of the coefficients of the partial derivatives of
@ of the right-hand side is zero, this is a singular system. E the
determinant of the coefficients of equation (2) and the coefficients of
the five linearly independent expressions on the right-hand sides of
equations (4) tl&ugh 18) is zero, that is:

8

.

=0

(lo)

— —— .——
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then the surface given by equation (3) is called a characteristic
&rrface. Clearly, whether a surface is characteristic depedds on the
‘n @(z,~,r). The left-hand side of equation (10) canbe expanded
by Iaplace’s expansion by&mrs of the last

[)

az2 “MZI~ ‘A14$~- (AM+

()

avbA24 ~2+(A25+A34)~~-

where the ~ j sre minors obtaind from the

ith ~ jth COmmnE omitted.

two rows to give

A.23)$$-

()

ar2=’o
A35 ~ (U.)

first four rows, with the

Just as the two-dimensionalmethcd re@res the existence in the
plane of characteristic curves (see reference 12), this method requires
the existence in space of characteristic surfaces. Thus, the class of
solutions of equation (Il.)is examined. b this class, there sre those
characteristic surfaces which can be parametrized by two space coordi-
nates. For concreteness and because they sre suitable for later appli-
cation, the following two cases sre considered: (1) s.~ and w=r;
and(2) S=Z andw=r. b case (1), equation (Id.)becomes

where A~j sre obtained from Aij by putting

o

(az~,
and tsking the elements of the first row of equation
ofcpandr. ti case’(2), equation (D) becomes

where A~j sre obtained frcm ~j
(bY Putt@3 %

and taking,the elements of the first row of equation
zandr.

(12a)

%%)=(%0,1)
(10) as functions

(12b)

Since equation (12a) is a first-order equation in two
vsriables, it may be solved with a given noncharacteristic
z= fl(t), cp=f2(t), r= f3(t) hae first derivatives

independent
initial curve
such that

. . ..- .. .. . .. .. . ... . . . . . ..— ——— . . . . . ... . . . . . .—-. . . ....- - ----- -.—. .—---- . ...— . .. . . —
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1

~ + O, such that initial values of ~ and ~ satisfy equation (u’a)

on the curve, and such that

(see reference IJ-,p. 63 ff.), and

for these two c-es, respectively,

must satisfy

similarly for

(13)

equation {12b). ~en
dv

the initial values of ~ and &

(14a)

(14b)

where ~j sre obtained from X3 by putting “

(

az aq b
)( )

azlwar
~~~~~=~~~’~ andtakingthe elements of the first row of

equation (10) as functions of t. Equation (14a) has two solutions for

%-f

A~+O

(15)

(16a)

aq
Equation (14b) has two solutions for ~ if

Thus,
istic

A;42 +“4 A; 44 >0 (M)

A~4 + O (16b)

under either of these patis of conditions there sre two chsracter-
surfaces through the initial curve. “

.

#

.——. .—— . — ————— —,. —— ——..——. —.-
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Recall that in the &-dimensional case, there is a crit%rion for
the existence of two one-yarameter families of characteristic curves in
the plane. These sre taken to form a new curvilinear coordinate net -
the characteristic coordinate net. The characteristic equations are
then obtained as equations in the characteristic coordinates or param-
eters<reference 12). In three dimensions, the criterion is for the
existence of two characteristic surfaces through each curve of a set of
curves in space. If appropriate families are selected from this collec-
tion of surfaces, the procedure is somewhat analogous. Mdsing such a
selection requires specifying an initial value problem.

Initial Value Problem

Since, for example, Q = constant satisfies the partial differential

[

equation 1) in an arbitrary region, it is clesr that a solution of -
equation 2) satisfying further conditions is wanted. Thus, in adtition
to the condition that a function O(r,cp,z) satisfies equation (2) in a
given region, further conditions sre required of the farm: on a speci-
fied part Z of the surface bomdinn the given region, @ as well as

its first derivatives
b~ a~ ao
7373?’ x sre to take on a priori given values.

These may be given arbitrarily up to certain limiting conditions.

Let an initial surface ~ be given. It is assumed to be not char- .
acteristic; that is, it does not satisfy equation (n) . A one-psrameter
family of curves is select~ which simply cover X and which are nowhere
tang~t to r = constant curves; each curve may therefore be parametrized
by r. Under the conditions (X5) and (16a) or (15) and (16b), there is
a pair of chsracteristic surfaces pass~ through each curve, and these
surfaces plus r = constant surfaces may be taken as coordinate surfaces
of a new coordinate net, since the Jacobian of the transformation

z = z(u,v,r)

. .

q = q(u,v,r)

1
r =r )

is not zero on X (reference 10). Z may be given by

! . .

(17)

..— ------ ------- . ... . . ...—- ,.. -.. _. .. —_____ ------- .. . . . . . ----- .. _+_- ..-_ .-, #_.__ . .._ -
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z = z(s,r)

rr=

where s is now the parameter of the family
istic surfaces are

z = z(u;vo,r)

T= T(u,vo,r)

rr=

z = z(uo,v,r)

I?=Wuo,v,r)

rr=

‘or conv-mce’ “-lt u = * s a v = ‘u

NACA TN 2705

(18)

I?l
~

selected, and the character-

(E)

(20)

on z.

me lhiting conditions on X other than those already mentioned
sre: the functions definhg ~ and their first derivatives with
respect to s are psrtially analytic functions with respect to w.
This is tobe true of all the functions defined on z (cf. reference 10).
!lheremaining 13miting conditions on the initial functions are the strip

a@ aQ aO
conditions. On any surface, in particular on Z, ~, TW ~ must

satisfy the two first-order strip conditions

(21)

L .—— .._ .- —.. — —— —.. —.. .— ._. __— — .
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aoaq aah
9=2%+ FVXT+Z3G

Characteristic Equations

In terms of the parametrization of equations
characteristic surfaces are obtained from equation

[)

2
*; g u azaq

()
NP2

+A14~~-A24 x

()

a= 2 azaq
A& ~

()

av2
+A~4~x-A~4 S

(22)

(19) and (20), the
(n) in the forms

= o (23)

= o (24)

az a~ ij
Note that &j md ~j are the same functions of ~, ~, a , the

distinct notation indicating that here in the first case aij are con-
sidered functions of u,r
functions of vjr so that

suffice.

AL ~ O implies that

equation (23) considered as

and let the root determined

-%4 -~.

and in the second case aij sre considered
in general the common notation ~i~ will

%+oonx. ~t, the root determined by

-%4 +~4
a quadratic be PI . 2Q .

J-6

by equation (24) be

%= 2%
. Then equations (23) and (24) become:

Similsrly, if 4*4 # o

.

az awo .~ - Pl~- (25a) -

a~=o
% -P2-& (26a)

then equations (23) and (24) become

aq az
3E- ‘1~’o (25b)

. . . . ,_. .-. _ _____ . ..______ ,.. .-. -———--—— —..-.. ..-—- .. —— - ..———.. — ... —..._----- .——. ——.— -
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(26b) .

1
where .Ti= ‘“Pi

On my surface the 3.2third-order strip conditions must also hold.
They sre arranged as follows,.where e takes on the values z,q,r
successively and subscript notation is used for derivativeswith respect
to z,v,r:

(27)

a%zzc + 2a21~C + 2a3%rz~ + a22@Wc + 2a3%@c + a3%rrC + a&@zz +

2a~1QW + 2a~1@rz + ac22QW + 2a~2@m + a~3@n + bc = O (28)

which sre obtained by differentiating equation (2). I&

E
8’

-—— —— — -—_ ——. .. . . . . _ —. ——— . ..— — ______ . .
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.

,,

to
&
o so that in equations (27) and (28) there

nonhomogeneous equations in six un@owns

2a23 ~33

are for each
which may be

\ (29)

c seven linear
written as:

(30)

NOW if the surface iS a c~racteristic s~faceJ the ~trfi ‘f ‘~u- .
tion (30) is of rank 5 or less (cf. equation (10)) and thus, as consist-. . .
ency reqtires, so is the augmented matrix. This in turn requires that

I
the two sixth-orderminors formed from the augmented matrix by delet@
the last row and second column and the first row and second column be
zero. In particular, on the characteristic surfaces given by equa-
tions (19) and (20), these minors upon expansion become:

I

‘,

.
,
I

(31)

---- —...——— . ... —._-_. . ___ —. ———... . . . . . -.—- -J_ .----- —-. ...=...—. — _.. ...... ..
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on v = constant,

mu= constant, and if gag+o>

on v = constant, md if gg+o,

on u = constant. “

By means of equations (25a) and.(26a), equations (31) &d (32) may be
expressed in terms of P1 and P2:

(35a)

By means of equations (25b) and (26b), equations (31) and (32.)may %e
expressed in terms of T1 and T2:

(3%)

(36b}

L. ._ .._ _— .—. —- -_ —._ ———— ——— .——_ ..— ..—. .
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Now consider equations (25b) and (26b); equations (21), and (7)
to (9) with S = u; eqyations (35b) and (36b) with z for e ; equa-
tion (35h) with 9 and r for c; and equation (33) with ~ and r
for C. These are 12 partial differential equations for 12 functions

in (u,v,r) space. They are first-order nonlinear equations, which,
however, are linear and homogeneousin derivatives with respect to u
and v. They have

12

E au
iCL=l

12

are functions

~ 1
1, 3, 4,--, 7, 9,--, 12

(37)

2, 8

In the (u,v,r) space the initial surface ~ becomes u + v = O. “

The values of the functions ya on X are (Ya)(0) =Ya(u, -u,r) =

~a(@ u~r)~ where ~a are initial values on Z as functions of s,r.

aya ()aya(O aia
The values of

F ‘n z are F ‘r

The values
(%..(0) =dr:)(o)

obtadned by solving equation (37) on the

Equations (38) come from

s=@u= -@v on the

on Z are, respectively,

(o)

()a ba
SF”

aya aya
‘f ai- andF on .Xare

hitial surface with

k= 1, 2, 3,.... 12 (38)

~a(s,r) = ya(u(s), v(s), r) and the relations

. -..—. . . . . .-. ... —- —....—. _ . ...—. —.,. ._____ . . ... ... . . ...... ___ __. . ._ - _
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.

The E equations (37) with these initial functions on u +’v = O
constitute an initial value yroblem. It follows from the proof of refer-
ence 10 for the general case that this yroblem is equivalent to the
initial value yroblem for equation (2). A solution of this problem thus
leads immediately to a solution of the initial value problem for equa-
tion (2). Uniqu-&nessis abo preserved.

Solution of fiquimlent

Equations (26b) and (36b) with 6 = z

Problem

are differentiatedwith
respect to u, and the others are differentiatedwith respect to v so
that there are obtsind 12 equations linear in 12 second-order uv
derivatives and.nofiomogeneousJ

The matrix of Dti

z a%

Dti~=Gi
a

of this system is:

(39)

I
-T1 1 I

- T2 1 1’ I
.—. —. ———

02
-t—————––

% ,-looo~

Q Q
Zz Zv

10-1001
0 10 ()-l 0;
Zq ‘w I

Q Q
Zr Tr

1000-11
———— ——— —— ——— _—— —— ——— ——— —— ——— .

0 E(z) [–
–––––– ;Tl~4 .% o 0 0 0

0 E(z) 1 IT2%4 ‘% O 0 0 0
0 E(q)

o E(r)

-a- &@zv X“w

- g%r - ~Zpr ,

I
I

in which the elements of the empty rectangles are sXl zero. Briefly,

.,
.——-. ——.- ——————.—-— -——- .-. —-— ------ -- . —
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augmented cOlu.mnThe Gi of equation (39) is

\

-—— ---
ih au -

-Y2-

-+
aEuz ~

(h au

% a%

-’

Solution of this

F

system yields a set of 6quati’onsof the form

(40)

.

. ..- . .._. .. . . . .. .. . . . . .. .... . ._-. . ... . .. --, .- _. _,_ -. T_,--------___ ..... .
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.

>2...

since T2 =
LOwhen~=O, then D- :~~- = G8 is

a2y8 a

identically and ~ may be chosen arbitrarily and the

N
*
c
c

satisfied

r~

equations solved.for the remaining second derivatives. To solve the
transfarmed.initial value problem, ref~ence 10 uses an extension of the
Picard method.

E equation (40) is integrat~
surface u + v = O to an arbitrary

with respect to v from the initial.
point u,v,r (see fig. 1),

aya aya
J

v

~ (u,v,r) - ~ (u,-u,r) = fa dv
-u

(41)

Then integration again tith respect to u from u = -v to any value of
u gives ya ss

!u ay
Ya(u~v~r) = ya{-v,v,r) + ~ (u,v,r) du

-v 0

u ay~
J[

v
= ya(-V,P,??)+ ~ (U,-u,r) +

J’]
t& dV du

-v -u

(42)

ay
The quantities ya(-v,v,r) and ---$(u,-u,r) are lamwn, but fa depends

on values of ya at potits not on u + v = O; a zeroth approximation

f (o) is therefore chosen for faa and a method of successive approxi-

Let f (0) be f with the values of its argu-mations is ‘employ&l.. a a
ments assuming theti initisl values at ccnxrespondingv. This gives new

aya{U
()

aya
values

z for ~ (u,v,r) and in turn new values (ya)(1) for

ya(”JvYr) ●
tie relation

..—. —.. ..——__— _____ —— -—___ .—-— .- .._
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r)ya (1)
similarly gties ~ . The functions (yJ (1),(%.)(1), (%#)

(43)

and their derivatives with res~ect to r are substituted back into
equations (42) and (43) and the process is repeated. h general,

(g””) .(~)(”).ffJ.) .Vf

-u
(44)

(45)

(46)

where v=l,2, . . .

The ya(v) converge to the solution of the transformed pr,oblem.

In the application which is now to be considered, the design of a
does not always hold,rotor, %*4 # O . so that the equivalentproblem must.

a~o be expressed in terms of equations (25a), (26a); equations (21), and.
(7) tO (9) with S = U; equation (35a) with z and cp for e; equa-

[

tion 36aj with ~ for e; equation (35a) with r for c; and equa-
tion 33) with z and r for c. The use in this application of two
clifferent formulations of the equivalent problem can be avoided by
putting Tr=CPor W=z instead of w = r when characteristic sur-
faces sre selected. ‘I&m, the physical condition which must be satisfied

is 22 + w$> a2, which may be assum~ to hold everywhere.

—.. . —. .._ ... . ...,, _...__ ._ ..= ----- ____ —--- -.-. .—..___ .. . . . .. ..._ -.. _.. -.A.-,-----__________
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‘RO’IWDESIGN

Shock Ehmface Xl and Ujy3tream%ction *face X z

As an application of the general theory, the flow of air through a
rotor of an axial ccqressor is coIIEidered. Attention is focused on a
single rotor passage and on the air flowing into, through, and out of
this passage. As the air upstream of the blade yassage fluws into the
blade passsge, the bkdes affect it in one of the following genersl ways.
In the idealized case of thin blades, the upstream velocity can be arbi-
trarily prescribed mibject only to the condition that the components be
uniform in the tangential direction, and then if the design point is
chosen so that a blade is tangent to the relative stream surface at its

1 aq av
leading edge (that is, if the blade satisfies ; W9 = Wr ~ + Wz ~

along its leading edge), then the air will flow smoothly into the
passage. On the other hand, if the blades are not thin (nor have cusp-
shaped leading edges) then fur no steady upstream velocity that may be
specified can both the pressure and suction surfaces satisfy the condi-
tion, so it would seem that there would have to be a discontinuity in
velocity as the air enters the blade passage. An indication of what
actually hapyens for a blade with arbitrary leadlng edge is given by the
folJmwing result (cf. Jones, reference 13) for appraimately straight
leading edges with approximately constant wedge angles.

(a) E the component of the upstream relative velocity & the plane
normal to the leading @e is supersonic, then in all other respects the
upstream velocity may be arbitrarilyprescribe and a discontinuity, or
shock, genm~ ~ OCCUr.

(b) H the cqonent of the upstream relative velocity in the plane
normal to the leading edge is subsonic, then this velocity cqonent
makes zero angle with the blade in this plane and the air passes smoothly
into the passage. In general, the condition on the velocity,in (a)
permits specification of upstream velocities within a considerablerange
including steady, Worm upstream velocities. b (b) the rotor effects
an adjustment of the velocity upstream msking an a priori prescription
of the velocity upstream unrealktic.

. b view of the faregoing considerations, it wi12 be assumed in the
sequel that the upstream velocity ccqonents are prescribed according
to (a). II?the wedge angle (at each radius) is small enough snd if at
design point the suction surface at its leading edge is tangent to the
upstream relative flow, then there will be ‘a shock surface ~ ~ coming

off the pressure surface attached to its leading edge @ and going
across the passage and downstream toward the suction surface with leading
edge @ (fig. 2).

_—. —. —.——. _____ . . . . ____ _. ._. —.
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The shock swface Xl is described by

3.9

(47)

with a given leading edge. k equation
fcm derivatives of ~; h is a measure
E~; and the coefficients sre evaluatd

obtain the differential equation for Zl, first note that

(47), subscript’notation is used
of the entropy change across
upstream of Z1. lM ord~ to

~rwr- ; WT + ~zWZ “

‘Os a’ ‘&dw = “Zwz ‘2 + “rwr

(cf. fig. 3). or in terms of 131,

(zqlrwr- Wq + .cpZwz)z

0%? ~ = ‘h2‘1 (47a)

But by means of

relation, sin?

the conservation principles for shocks and the Prandtl

~1 is in turn expressible in terms of pressure ratio

according to

(47b)

(see reference 12.)

Finally, the Rankine-Hugoniot relation gives

. ----- .. -—--- .. —--- .._ ..—.—.—..__ __.. _- _.. -------- -.-—.—-... ———. —.—. . .
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%
‘N/%. -t is, ~ may be expressed in terms of entropywhere K = e

change across the shock,

(47C)

%.
when S~Z P1 W —

(47c), equation (47)p~

It is aSSWld that

sre e13minated

obtained with

among equations (47a), (47b), and

J(K) +v2. A.
m

Y(1 - p’q

~, intasects the suction surface along a curve
A

C12. men the blade passage is split into a region upstream of xl

and a region downstream of Xl. Again, for simplicity, let the suction

surface between the leading edge @ and the curve CE be constructed

to coincide with a
22 of the suction

stream surface of the upstream
suf ace then is described by

.

velocity. This part

(48)

with a given leading edge, and the intersection of xl and X2 deter-’

mines CE. Thus, the effect of the rotor is confined:to the region

downstream of xl.

The entropy is now assumed to be unMorm upstream and downstream of
~, and its change is constant across Xl. Then if the flow is irrota-

tional upstream of Xl, it will be irrotational downstream of xl. As

a result, equation (1) will hold downstream

irrotatonality under the given assumptions
follows: On either side of xl (reference

- tix(vx~)= - VI +

of Z1. The downstream

may be demonstrated as
9)

qs

_——. —.-———— —— . .. .____ _.. _.__. . ——— .- —. ——. — . ._— _.. ... . ..
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.

By hypothesis, V I = O upstresm of Z ~. Since I does not change in

crossing a shock sn.dentropy is constant downstream b~ hypothesis,

VI = O downstream of ~ 1 (use T ~ = ~, ref=ence 9). Thus downstream

of Zl) Fx@X7) = o. If VX7 # o, then a vortex line mst follow a

relative streamline. Since it cannot terminate, it must intersect Xl

and so VX ~ has a component ncnmal to ~, at ~, . However, this implies ‘
N
tP
o
0

that the vorticity upstream is nonzero s;ce
not change across the shock. Thus, VXF + o

Note that among the consequences of the
Constsnt. For shrplicity it wild.be assumed
ver = constant upstresm. Moreover, if wr =

-L

the normal c~onent will
leads to a contradiction.

assumptions ~ @ I sre
that H = constant @
O upstream of ~,, then

~z = constant snd equation (47) is of the form:

.
/

{49)

a2 %
since = K1 - —. AXl Ci and Ki are constants. When equa-

r2
tion (49) is subjected to a Legendre transformation

‘=%
the following expression is obtained:

aF 4

() ()

bF 2
(C1!2 + C3v2 + C5~ + C7) ~ + (C2~2 + C472.+ C6~ + C8) ~ + C9= o

(50)

-— .--. —. ..-. — -..——..— . ..-. .—.- . ..-. .. .... . .. .. . .. .. ... . ._. ___ ..__ ..y-.~ _..__. -.
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so that

H the velocity on the upstreaniside of the shock is

(Wzl, w~, Wrl) and on the downstream side (wzz, ~, Wr2), then

from the shock relations,

where al is

(52)

the upstream sonic velocity and ~i are functions of

@r> @z related to ~. This is shown as follows.

U? the velocity is decmposed in the direction normal to xl and

in the two parametric directions on ~1, the components being denoted

by %, WTZ~ Wm> respectively, then on either side of 21 there is

the relation (fig. 2):

WN = #
u I-3

wr+A w~+A W=

21 w + Azz
WTZ = A r

w + A23
‘Y Wz

31
Wm = A

32
.wr+A

w + A33
~ Wz 1

(52a)

I

.
1

.—. —.—— ___ . .-— ——. - ———— —.———— -——— —— ____ . .._ ____ . _______



.

I

,.

NACA TN 2705

where the matrix of coefficients is

/
IQr0

\
-NpPzqj

23

Equation (52a) comes from

r~zwz -
WN =

0

where

,w~
WN ~

‘TZ/O1
is the

of the

..

Wm. (w.- wNy.,

m“
w~ ~ is the proj~ction of ~ in the radial direction, and

is the projection of ~ in the sxial direction,

0:=02 - (*)
2

Q =02- (wr)2

is the projection of WTZ b the radisl direction and W~/CJ3

projection of W~ in the axial direction. Since the determinant

matrix of coefficients of equation (52a) is not zero,

= BU WN+B
12

‘r WTZ + BM w~

Wq)= B21 22 WTZ + B23 W~WN+B

Wz = B“ 32 WM + B33 W~WN+B

(52b)

----- .-. —. . . . . . . ...-.-=- —-—- . . ... . . .. . . .. .... . . . .----- .—.- ....-. -.— . ..- ___ .. .
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.

where the matrix of coefficients is

0

Inammch as equations (52a) and (52b) hold on both sides of the shock,
the subscripts 2 maybe placed on velocity components in equation (52b)
and the subscripts 1 on velocity-components in equation (52a).

Furthermore, note that WTm = WT~, w~l = W~2, ~lWN2 = c? -ll%;~

(Prandtl relation, reference 32) and c: =
.

P2 (2hl + @. Substituting

equations (52a) in (52b) gives equation (52).

Downstream Suction Surface

As mentioned in the section GENERAL THE- it is necessary to know the
first derivatives of Q, which is essentially “thevelocity in this case,
on a surface Z in the rotor passage. This surf,aceis taken to be one
obtained from 21 and X3, the part of the suction surface downstream

of cu. It wiU be seen that on such a surface the conditions required

in GENllRALTHEORY can be satisfied. ‘Ihus,conditions on 23 must now

be prescrib~ to completely determine its shape and the velocity on it.
This may be done in many ways. How it is done best, the factors involved,
and the limitations imposed depend on performance and constructibility
requirements of the rotor. E, for the moment, it is assumed that the
shape of ~ ~ and the velocity on it have been completely determined,

then accordimg to the GENERAL THEORY, the velocity (wr, lrv,Wz) can be

determind at every point in the rotor passage. Thus, in particular,
the presswe surface is obtained as the stream surface through the
leading edge {~ ; the velocity distribution on it, and the velocity dis-
tribution downstream of the rotor sre alEo obtained. On the pressure
surface there sre certain constructibiltty requiranents, and on the
velocity distributions, certain performancee req@rements. An obvious
requirement is that the pressure surface should intersect the suetion
surface in a curve c= which may be taken as the trailing edge of the

rotor blade. Another requirement is that the velocity distribution on

——— . . ..— ——— ——— —-——— .. ...— ..— . ...— ——.—-J
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the pressure surface (as weld.as
to sho~ and be fair~ “smotih”

25

on the suction surface) not give rise
for high efficiency. Further, uniform

work input or free vortex flow downstream of the rotor is des~able. h
order to meet these and other reqtiements, there sre the choices in the
selection of conditions on ~ ~ pluE the choice of the as yet undetermined

o

;
constant, A . The following procedure isgiven as an _’le.

For strength and simplicity of construction, a goal specification
would seem to be that ~ ~ have straight-line elements sloping slightly

toward the radial direction in z = constant planes (fig. 1). Thus
23:Cp= 9(Z,r) would be given implicit~ by

sin [m(z) - Cp]= - ‘(z) ~os ‘(z) (53)

.

.

.

with the stipulation that m(z) - ~ be smsll snd positive. Here 2(z),

the intercept on the line ~ = $> and m(z), the angle with the line

‘V= o, sre determined in the interval (z ‘1) ~) in terms of qr evalu-
ated on CE by

(54)

which is obtained by_differentiating eqmtion (53) with respect to r

(55)

—
determined on Cu by

the latter condition being
along Cu.

reqtied in order to

,

avoid reflected shock

-—. _.. _ ._, __ .. —._.. .._ . ------- ___ —___ .—--— ---.———... ..._ .. ..-. ,_-.< -. . ...-. .- =._
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Beyond ~ ~ 2(z) and m(z) may be chosen to give the ‘suctionsur-

face the desired turning. These functions and their first derivatives .

are required to be continuous at z = ~ as well.as beyond. Thus

a%—= g(z,r) may be prescribed, where g(z,r} is determined frma p~es-
azz
sent experimental or theoretical lamwledge of maximum blade turning
before stalling. Differentiating equation (53) twice with respect to z

aq sandeliminating ~ and Cp yield the relation
3

y r2’’(z),2’(z), 2(z), m“(z), m’(z), m(z)] = O (56)
L

Let

m(z) = A23 +

and from the boundary condition on

BZ2+CZ+D

m(z) and m’(z) at z= 22 anda

downstream curve z . zd, the coefficients A,B,C,D are obtained. from

equation (56), 2(z) is then obtained with boundary conditions at z = Z2.

b order to obtain the velocity components on ~ 3, it iS ffist noted

that on ~ 3 they must satisfy

Wq)= @zwz’+ w+w~ (57)

(58)

Equation (58) is a necess~ and sufficient condition that there exists
a function @(z)r) on ~3 $?hichsatisfies the first-order strip con-

M.tions. For xl such a condition follows automaticallyfrom the

assumption of upstream irrotational-ity. ●

If the magnitude of the (relative)velocity on 23 is then pres-

cribed according to what would seem to be a desirable blade loading, then
eliminating wr ~ wz among equations (57), (58), and

T? = ~r + w$ + ~z yields an equation for WQ ~of the form

— —— —.- -. .—. ——— -- -.——— -——. — —.—.—.—— . ——-
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,

, (59)

b this equation,
/

O%r52(Zjr,wpw)‘ Zr%rTz

The Wz and Wr appeering in the ex$messions on the right-hand sides

are eliminated, respectively, by

(60)

Alternatively, w (or Ve) may be prescribed on 23 according to

a desirable loading. ,~en conditions (57) and (58) lead to

1“

, ,

. . . .. ----- ...—----- ...——....-— ..---- .— .._-. ___ __— ___ -. _____..--,________ ._ ..- .__.
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(62)

Equations (59) and (62) sre solved with given Wp and Wz, respectively,

on CH. In ~~ticular, a free vortex.distribution may be prescribed at

z = Zd.

Validity of Conditions Required in General Theory

In ordm to apply the general theory, condition (X5) in particular
must be verified. When the coefficients of equation (2) are taken to be
those of equation (1), then

2r’
A:4

[
= y (r%~ -

1
rcp’wr)(r’wz- z’wr) - a2z’rQ)’

j [ ~r’Wy- r@wr)2A~=-2 - a2((r’)2 + (@p’)2~

4*4
[

= r’ (r’wz

When the indicated algebra
obtained:

Z’wr)z - a2f(r’)2 -t.(z’)2)]

is carried out, the followlmg expression is

where T= (z’, rq’, r’). !Ibus,condition (15) becomes

F(F - a2) - (T”li)2>0

—— .. —.- ——._ .._ __ _. ———. . . ..-- .—— — _. —_.-—_ .. . ... . .. . . .
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which reduces to

Since 0?
e, or the

be outside

COS2 (Ii,w) c COS2 e (63)

ec fi/2. the anale between ~ and ~ must be seater than
curve’pkametriz-d by t through a point on (~~,~3) m.st

the Mach cone with vertex at that point. This condition can
always be satisfied by properly choosing the t curves. E, as in the
formulation of the rotor problem- these curves sre chosen to be
z = constant curves, then the application of oth~ conditions such as
assuming radial leading ekes may prevent difficulties.

IX conditions (16a) and (16b) are examined, it is seen that A%

end %*4 are quadratic forms in rep’,r’ and z’,r’, respectively. For

equation (1), they sre definite quadratic forms if ~q + ~r > a2 and

~ + ~ > a2, respectively. b the ap@ication developed herein, it is

assumed that at least one of these inequalities holds at every point of

(%,X3) ●
Roughly, far enough upstream in the rotw W. > a and far

enough downstream in the rotor Wz’> a.

Furthermore, it numt be shcnm that the s@ace (~1~3) iS n~here

tangent to a characteristic surface. A sufficient condition for this is
twt the kch cone with vertex at each po~t of (~~3) cut (%23) ~

because if @1,~3) w=e tangent to a characteristic surface at some

point, it would have to be tangent to the Wch cone at that point. This
condition is verified by showing that at each point the angle 132

between the velocity vector and its component tangent to (~1,~3) is

less than the Mach angle. This is obvious for X3. For ~’1 note that

this condition is equivalent to

and that the relation

.

.

(64)

(64a)

—. -. .._ -.–..——
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21
analogous to equation {47b) tith — <1 becms equation (64).

22

F31na31y,in order to apply the general theory, the initial surface
~ has to be psrtislly analytic with respect to r in every z interval.. g

Clesrly, @~~3) does not satisfy this requirement in intervals con-

taining points of the curve of intersection of ~ ~ and ~s. Conse-

quently, z is constructed fran (21,23) by rephc@ (~1~3) between

Z1 and Z2 (cf. fig. 1) -bya s~ace given by a third degree Polynwal ~

in z with coefficients functions of r such that it, as welJ-as its
ftist derivative with respect to z, matches the original surface on

and Z2. me same thing is done for the function ~. It iS
‘1
reasonable to assume that the preceding conditions sre stiLl valid.

Integrands for Equations.(44)and (45)

In solving for the uv derivatives from the linesr equations (39)

it is clear that fa
%

is obtained in terms of ~~, ~4j 71) T2j ‘~~

%2 %4 %’4 % “2
~, ~, ~, ~, ~, E(E), v>*.

These must be expressed

aya aya aya aya
in terms of yaj ~y ~> and derivatives of ya, ~, md ~ ~th

respect to r for the integration.

~dutm the ai j as the coefficients in equation (1) gives

(66)

—.———-————————.— .— — .- —.—.=
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on z, it will.be more convenient to

velocity.components.
‘tice ‘m % =

31
/

have these functions in terms of

O they become

(65a)

. (66a)

(67a)

In order to get the expressions needed for T1 and T2, these equations

are substituted into

Further, the derivatives of equations (65) and (66) with respect to
aTl aT2

u and v are required; for
=-m’

these, as well as the

derivatives of equation (67), sre substituted into

.

.——.—.. . . .. . .. . _._, ._ .. . .. _________ ..__ _ _.._ ___ ---- .. .. ___ ---
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For the E{c),
.

$’
8

[ -(q - .2)*]:@zq+E(9) = B(q) + 2Qr@z

where B(z), B(@~ and B(r) are obtained from equation (29) in which

‘j and b ~ are given by the foil*:ac

---- — . -- —.- —.. -
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‘Z= -+[(%s+4‘.. - W&+zaaz)

Again, as for the ~ij previ~~, on ~ it will be more convenient

to have the E(c) in terms of velocity co~onents. Since again ~ . 0,

they are’

E(z) = 2W w a@+2
rz~ .. [ ~ ‘@r -

{
2 Wza?z:- aaz~zz + ~

[
Qr ‘~*ZZ ~.

.-— . .. . . .... -—. .-. —. .----, .. ____ _. ___. . .. ... . . . . ___ ~__ ____ ..-... -,_+-. .._
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(68C)

Finn, the derivatives of equations (68) to (70) with respect to v
and of equation (68) with respect to u are required.

h alJ-these expressiomj a and ,itsfirst derivatives are obtained
from

CJ
G
c

-__—_._.———— —— _——. —..—. — . .. . .- .
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1 .

CONCLUDING REMARKS

A method has been presented by means of which a detailed numerical
description of msny types of fltid flows in turbomachines can be obtained.
The method is applied to “oneparticular type described to the point

9 where a solution is obtained merely by substitution of numerical values

i in the given equations. Once the slgebra needed to obtain such equations
has been done for any problem, the work involved in getting numerical
results is not expected to be prohibitive, particularly in view of the
fact that it largely consists of iterated integration, which type of
calculation is welJ-suited to rapid executiorion high-speed computing
machines.

1

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics .

Cleveland, Ohio, Februery H, 1952

.,
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JETEmlx - SYMBOLS

The following symbols are used in this report:

A,B,C,D constants in eqpation for m(z)

%j~ f?j~

q~> gj> fourth-order minors obtained from the ftist four rows of
,

A!tj~ ~j
equation (10)

Ai j

a

Bi j

B(c)

b

CA

c12

C34

C*

.

coefficients in velocity transformation

sound velocity -

(N~21a22a23 =
<)
%-m @z

rr

a31a32a3 @r @z

coefficients in velocity transformation

constants i=l, ...,9

intersection of 21 and 22

trailing edge

— —. — ..— — —.-. ..—. .
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‘ia coefficients in equation (39)
#

Gi

g(z,r)

H

h

I

K

M

m(z)

N(f,rj)

P

r

s

s

T’

t

E = z,cp,r

Legendre transfomnation of ~(z,r) in equation (49)

mtegrands in solution of equivalent problem

coefficients in equation (39)

given tinning on ~

total enthalpy .

static enthalpy

e-?

constants, i = 1, 2

azbitrary function in eqyatiori(51)

intercept on

Mach number

angle with cp

Cp= YC/2 of generator of 23

. 0 of generato. of z=
.J

integrsmd in equation’

static pressure

coordinate in cylindrical system

entropy

parameter on a surface

-tude oftangent vector

parameter on a curve

.

... . . ..- -—..- . . . . .. .—...— .— —____ ________ ___ .-.__ _- .—— —_ . . .



transformed coordinates

w +urT

magnitude of relative velocity

parsmeter on a surface

components of

coordinate in

angle between

complement of

relative velocity

cylindrical system

velocity vector and

a

submatrices of Dia

ratio of specific heats

coefficients h equation

an index denoting z, ~,

independent variables of

Mach angle ‘

NACATN 2705

.

normal to z
.

(59)

or r

Legendre trsnsfomation

a function’of entropy change across shock

6y-l
g

a root of equation

roots of quadratic

initial surface

shock surface

suction surface

suction surface

(47C)

equation, i = 1, 2

ahead of shock surface

behind shock surface

/

.. — .
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.

39

N
P
o
0

(qz)2 + 1 + (%)2.

CP- (rcpz)z .8 = .2-1 (g = .2- (rqlrp’

F’
~ - (WZ)2 .-

~ - (rcpy

roots of quadratic eqyation

velocity potential

coordinate in cylindrical system

function in equation (56)

~ velocity of wheel

Subscripts:

d downstream “
.

ij omitted columns in expmsion of equation (10)

n velocity component normal to shock

TZ component tangent to shock in z = constant qurface

TR component tamgent to shock in r = constant surface

----- ... .. .. . . ,.. A.- ...-_ ..-.”._~_-.._------._+.- ...— ... .___ ._.,______________ ----
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1 ahead of shock surface

2 behind shock surface

Superscripts:

ij distinguish
and (52b)

coefficients in veloci-ty

(v) the ~th approxhat ion

1

1.

2.

3.

4.

5.

6.

7.

8.

derivative with respect

Tyler, R.
Cascade
Csxlaaa,

to t
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transformations (52a)
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Figure 2. - Shock and auction surfaces.
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Figure 3. - Velocities at a point of shock surface.
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